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Abstract We use a Markov chain to model the ligand binding dynamics of a single
molecule and show that its stationary distribution coincides with the laws of the Grand
Canonical Ensemble. This way of deriving the equilibrium laws has the following
advantages: Firstly, the derivation is short and does not require the knowledge of
the Microcanonical, Canonical or Grand Canonical Ensemble. Secondly, it provides a
descriptive interpretation of the factors that contribute to the probability of a microstate.
In this regard, it also shows that the chemical activity, which cannot be regarded as a
probability (since it is not necessarily bounded by one), can be interpreted as the ratio
of two probabilities. Thirdly, our approach allows modeling how the system reaches
equilibrium. This can be a useful tool for the study of non-equilibrium states.

Keywords Decoupled sites representation - Ligand binding - Binding polynomial -

Grand Canonical Partition Function - Binding energy - Markov chain -
Binding dynamics

1 Introduction

We consider the following situation: A target molecule M has n binding sites for
substance L. A certain amount of both substances is solvated in a liquidity at a much
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higher concentration of ligand L than of M, and the number of free ligand molecules
can be measured. Thus, the difference between the number of free and the total number
of ligand molecules allows us to determine the average number of ligand molecules
L bound to a single target molecule M as a function of the concentration (or chemical
activity) of L. Experiments of this kind are a classical procedure in chemistry and
produce titration curves that characterize the overall binding of L to M. Titration
curves for protons binding to aminoacids can be found in nearly every biochemistry
textbook and have been studied for 100 years [2,4,7,8,13]. The mathematical model
for titration curves is based on the binding polynomial (bp). It is a function of the
chemical activity of the ligand and derived as a special case of the Grand Canonical
Partition Function (GCPF), if molecule M is regarded as a system that can take up a
finite number n of particles [1, 12, 14]. Its origin in statistical mechanics reemphasizes
that it characterizes stochastic properties of a system: It defines a family of distributions
over the number of bound ligands, which is parameterized by the chemical activity
of the ligand (the temperature is fixed). The titration curve, which is the result of
the previously described experiments, is derived by applying the expectation operator
to the parameterized family of distributions. However, the GCPF describes only the
thermodynamic equilibrium, a steady state of a system consisting of a large number
of molecules, in which every single molecule follows its own dynamics of releasing
and binding ligands. Thus, it seems obvious that another approach to derive the well
known laws of equilibrium might be based on modeling the ligand binding dynamics
of a single molecule. In this work, we derive the GCPF for a system with a finite
number of binding sites, starting from modeling the binding dynamics. We use a
Markov chain model in discrete time and use some reasonable assumptions about
the binding dynamics of the molecule to deduce the transition probabilities. This
approach facilitates the understanding of the equilibrium distribution, especially the
composition of the probabilities of the microstates and provides an idea of how the
chemical activity (which is not necessarily bounded by 1) could be interpreted from
a stochastic point of view. Moreover, it also allows us to model the system’s way into
equilibrium.

2 Binding dynamics of a single molecule as a Markov chain

The binding state of the individual molecule M can be described by a Markov chain
on the set of tuples K := {0, 1}", with M, denoting the state of molecule M;
after m “time steps”. My,, = k = (k1,...,k,) € K indicates whether a ligand
molecule occupies site i (k; = 1) or not (k; = 0). We make the following assumptions
concerning ligand binding dynamics to deduce transition probabilities and equilibrium
laws:

[A1] The time between step m and m 4 1 is so short that the binding state of only
one site can change. Using the £;-Norm

n
k| =D Ikl
i=1
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this means |M; , — M1 m+1| < 1, where, as usual, the difference of the tuples is
understood componentwise.

[A2] For k,l € K with |k — | = 1, the probability of a transition k +—> [ is
composed of three factors:

[A2-1] the random choice of a binding site that may change its binding state,
[A2-2] the probability that the environment provides a ligand molecule or takes it
up (depending on the state of the chosen site) and

[A2-3] the probability barrier given by the difference of the energies of microstates
k, [ of the target molecule.

[A3] Since the concentration of L is much higher than that of M, we assume that
the binding of the ligand to the individual target molecules occurs stochastically
independently. This means that the molecules of type M do not interact, and a small
reduction of the number of free ligand molecules, due to an uptake by molecules
M, does not affect the probability of [A2-2].

Assumption [A3] guarantees that we can describe the whole system of all target
molecules by modeling only one target molecule. In the following, we will specify
[A2], which allows us to deduce the matrix of transition probabilities and subsequently
its stationary distribution.

[A2-1] Since this probability factor describes the choice of a site, there is no need
to discriminate between the sites at this point. Consequently, we assume a uniform
distribution which means the first factor equals %

[A2-2] If the chosen site is not occupied, the second factor is given by probability
01 # 0, which can be interpreted as the “availability” of the ligand. It incorporates
the spatial availability, geometric orientation of the ligand to the binding site and
how “costly” it is to decouple the ligand from its environment (e.g. the energy
required to remove hydrogen bonds between the ligand and the solvent molecules).
In the case of a chosen site being occupied, probability 8> characterizes the barrier
of releasing the ligand molecule. In “most” cases 8, # 0 can be considered as being
equal to 1. However, e.g. in supersaturated solutions or due to weak solubility of
the ligand, the release of a ligand molecule might be of energetic disadvantage for
the environment. Both factors #; and 6> depend on the ligand concentration and
describe the energetic state of the environment.

[A2-3] The third and last component p; ; models the probability barrier given by
the energy difference of the target molecule, when a ligand is released or taken up.
In contrast to [A2-2], this factor is not assumed to depend on the environment, i.e.
on the energy state of the solution. We will derive a suitable function that depends
on the energy levels of the states k and I: Let G (k), G(/) denote the energy levels
of the states. We are looking for a function py; := p(G(k), G(I)) — [0, 1] with
pr = 1if G(I) < G(k). This means if the energy level is the same, or is reduced
by the transition, there will not be an energy barrier that impedes the transition
(expressed as a probability). However, if energy is required, i.e. G(I) > G(k),
then px; < 1. Since pg is a probability, it can be represented by

pry =min (1, f(G() — G(k))) ey
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for an appropriate nonnegative function f(x) which is different from the zero
function and which depends only on the energy differences. Some properties of f
are reasonable to assume

fx+y) =1 f»), 2
f(x) € (0, 1) if and only if x € (0, c0) 3)
f is monotone (4)

The first property models that an additional energy barrier represents a second
factor: The probability of overcoming a barrier x+y shall be equal to the probability
of overcoming x and subsequently y. This characteristic of function f is also
required for consistency with possible extensions of this model by incorporating
intermediate states. The existence of intermediate states leads to a splitting of the
energy barriers. The second property expresses that only a transition that requires
energy poses a probability barrier. Monotonicity is reasonable, too.

It is well known, that these assumptions about f determine f to be the exponential
function.

Lemma 1 (a) A B € RT exists such that f(x) = exp(—px).
(b) pki <1= prr=1

Proof (a) Due to Eq. (3), we can apply the natural logarithm [on x € (0, o0)] leading
to Cauchy’s functional equation, which means In(f) is linear and —f < 0, according
to Eq. (3). Part (b) is a direct consequence of (a). O

3 The transition probabilities
With assumptions [A1-A3] we obtain, for a certain molecule M;, a Markov chain

M, ,, on the set of states {0, 1}", with n denoting the number of binding sites. Thus,
for |k| < |l| and |l — k| = 1, the transition probabilities are given by

1
gk =Pk — 1) = ;91 Pkl 5
where 6 denotes the “availability” of the ligand. If |k| > |I|, || — k| = 1:

1
Gk, = ;9217/(,1 (6)

with 6, denoting the “resistance”. The probability of staying in the present state / is:

qi=1- Zm,k

k£l

21_:‘1 o1 > bk + 6 D puk )

{k K[> 101, [k=11=1} {k11kI<Ill, [k=11=1}

@ Springer



J Math Chem (2014) 52:665-674 669

Example 1 For a molecule with two binding sites for ligand L, we use the notation
0:=(0,0),1:=(0,1),2:=(1,0),3 := (1, 1) as anew composite index. The matrix
of transition probabilities is

1 - % (61 (po,1 + po,2)) %91170,1 %91170,2 0
302p10 1— 3 (61p13+02p10) 0 301p13
102p20 0 1— 1 (6123 + 62p20) 16123
0 %92173,1 %92173,2 1 - (%92 (p3.1+ p3.2))

4 Aperiodicity, connectivity and detailed Balance

We know that the Markov chain with these transition probabilities is aperiodic and
connected. The first property can clearly be seen because the system can return to its
initial state within one time step, which means it remains in this state, or in two time
steps by going there and back. The latter property is also obvious since every state
can be reached. Consequently, the Markov chain has a unique stationary distribution
7 to which the system’s distribution will converge and which we will characterize.
If the matrix fulfills the detailed balance condition, we will be able to calculate the
stationary distribution quickly, according to the procedure described in the following
lemma.

Lemma 2 Let Q = (qi,j)i,je(l,...n) be a transition matrix on a connected space.
Moreover, let 1 = (w1, ..., T,) denote its unique stationary distribution fulfilling the
detailed balance condition. Then the stationary distribution can be calculated in the
following way:

e Choose a reference state k, and define my = 1.

e Calculate the ratios % of all pairs {i, k} with q; . # 0 by Z—; = ki

T dik’
e If gi x = 0 choose any path (i, ..., k) with probability greater than zero and cal-
culate the pairwise ratio.

o Normalize the distribution.

Proof First note that m; # 0 Vi € {l,...,n}, since the space is connected. The
described procedure gives the stationary distribution because the detailed balance
condition means

Tiqik = TkYk,i»

which gives the ratio ;—; if gix # 0. As the space is connected a path from i to k
exists with probability greater than zero. Thus, if g; x = 0, we can calculate the ratios
pairwise “along the path” to calculate the ratio % O

In other words, Lemma 2 states that for a given reference state, the ratio of the
probabilities of the stationary distributions are identical to the ratios of the expected
flux between two states (pairwise) along any path. This statement is actually one
direction of Kolmogorov’s criterion [5]. Even though it is not obvious that the matrix
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of Example 1 satisfies the detailed balance equation, we will use the procedure of
Lemma 2 and show that the obtained distribution is stationary, for the special case of
two binding sites.

Example 2 For the case of two binding sites, we use the same abbreviations for the
different states as in Example 1. We calculate the probabilities of the stationary dis-
tribution the following way:

7(0) 1
%91 POt _ 01p0,1
%92])1’0 62p1,0

7(l) o

36102 _ bipo2

m(2) o« 5 =
50220 t2p2,0

301p23-7(2) 0} poapas

7(3) x )
1602p3.2 03 p3,2P2.0

where o« means proportional to (of course with the same factor for all equations).

For the weights of Example 2 it is not obvious, whether we would obtain the same
probability distribution if we compared 7 (3) with 7 (1):
. 02 po.1p1.3

7(3) = .
03 p3.1P1,0

To see that the weights do not depend on the choice of the path Lemma 3 is helpful,
which will also be used subsequently to show that our model satisfies the detailed
balance condition for any number of binding sites.

Lemma 3

Pl — £ (G(G) — Gy ®)

Dj.i

Proof If G(j) — G(i) > 0, then p; ; = f(G(j)—G(i)) < land p;; = 1, according
to Lemma 1. Otherwise p;; < 1 meaning p;; = f(G(i) — G(j)) which gives the
statement since

FGGE) =G - (G =GWH) =1
O

Proposition 1 For every number of binding sites n, the matrix of transition prob-
abilities defined by Egs. (5)—(7) is detailed balanced with respect to its stationary
distribution.

Proof We use Kolmogorov’s criterion [5], which (in simple words) states that a sto-
chastic matrix and its stationary distribution fulfill the detailed balance condition if and
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only if the probability for “walking on a closed path” is independent of the direction.
More precisely, this means, the matrix (g; ;) fulfills the detailed balance condition if
and only if

Gk.irGiv.iz - - Gir—1,ir Qir k = ki Gy ip_y - - - Gin.ir Gir k )

for any path (k, i1, iz, ..., iy, k) and any r € N. We show that the matrix of transition
probabilities defined by Egs. (5)—(7) satisfies Eq. (9) and firstly identify gx ; = P (k +—
). Let a path (k =: ip,i1,i2,...,0r,k =: i,41) be given. First note that if a path
includes a step which changes the state of more than one binding site, both directions
will have probability zero, since gj; = 0 = g;,j if | j — [| > 1. The probability of all
other transitions from j to [ with |j — /| < 1 are nonzero, since all factors which the
probabilities g ; are built of are nonzero. Moreover, if at a certain step, the state is not
changed, the factor g ; cancels out on both sides. Thus, without loss of generality,
every step of the path changes the state, thatisi; #i;11Vj € {0, ..., r}. Since every
probability ¢g; ; includes the factor % on both sites, it cancels out. Moreover, since
the path is closed, the power of the factor ; on one side of the equation is equal to
the power of 6, (we return to the initial state, every ligand which is taken up has to
be released afterwards). Using the other “direction” of the path every factor ; of the
left side will be substituted by a factor 6. However, since both factors have the same
power, they all cancel. The remaining factors are given by p; ; and we see, that the
matrix (g;, ;) satisfies Eq. (9) if and only if

pk,il pilv[Z ot pl‘rflsirpir’k
Pk,iy Piy iy - - - Piy,iy Piy k

=1,

which is true since Lemma 3 states that the left site is equal to f(0) = 1. O

Remark 1 In our model, the probability of a transition from k to [, with |k — | = 1 is
composed of a uniform proposal distribution on the states of the “neighborhood” and
of an acceptance rate given by 6 p; ; or 61 p;, ;, depending on the state of the chosen
site. Even though this structure resembles the Metropolis—Hastings algorithm [3,10],
our model does not coincide with this algorithm: The factor 6; is not part of the
proposal distribution, since otherwise, the proposal probabilities do not sum up to
one. Consequently, the acceptance probability is different to the one commonly used,
since it is bounded by 6;, and not by one.

5 The stationary distribution

Proposition 2 The stationary distribution on the set of states is given by a normalized
version of

0, 7]
P() = (@) f (G —-G{oy). (10)

Proof We know that the Markov chain fulfills the detailed balance condition. Using
Lemma 2 with the reference state {0}", we receive Eq. (10). O
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Since we assumed the molecules to bind ligands independently [A3], the distribution of
the states within the solution in equilibrium will be close to the stationary distribution
of a single molecule, due to the Law of Large numbers, if the number of molecules is
sufficiently large.

6 Activation energies

In the model presented in Sect. 3 we did not incorporate activation energy barriers.
However, an extension of our model is straightforward: Assuming, that an activation
energy barrier between two states i, j is a “symmetric” barrier, given by an instable
transition intermediate state ¢; j, we can rewrite Eq. (1):

pi,j =min (1, f(G(e; ;) — G@))) -min (1, f(G(j) — G(e; )))) - (1)

Assuming that e; ; has an energy level higher than those of states 7, j (activation
energy, instable state), the second factor equals 1. This gives for the ratios

pij _ min (1, f(G(ei)) — G())
pji min(l, f(G(ei ;) — G()j)))

= f(G() -GH) (12)

This result shows that we can add any additional “symmetric” probability barriers and
the stationary distribution will be unchanged.

7 Comparison to the Grand Canonical Partition Function

The Grand Canonical Partition Function (or “binding polynomial” for a finite number
of binding sites) is usually formulated as a function in the variable “chemical activity”
which is denoted by A:

> (G —Gqorm) Ak (13)
{keK}
with
A:exp(”_“o) (14)
RT )’

w the chemical potential, (1o the chemical potential of a reference, R the Boltzmann
constant and 7 the absolute temperature in degrees Kelvin. It coincides with the
stationary distribution of our model if we identify % =: A. Thus, chemical activity
might be interpreted as the ratio of “availability” and “resistance” in our model.

8 Decoupled sites

We will shortly highlight what decoupled (stochastic independent) sites, for every
fixed chemical activity, mean for the presented model of the molecule’s ligand binding
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dynamics. Following [9,11], we know that a molecule has decoupled sites if and only
if the energy G (k) satisfies

Gk)y=ki-G(1) +ky-G(2) + -+ +ky - G(1p) 15)

for any microstate k = (ky, ..., k,). Here, 1; denotes the state in which only site i
is occupied and all other sites are unoccupied. Equation (15) directly implies that the
energy difference between two neighboring states, e.g. (ki, ..., kn—1,0, kpt1, kn)
and (kq, ..., kn—1, 1, km+1, ky), only depends on the site m which has a different
binding state. Due to the structure of the transition probabilities [Eqgs. (5)—(7)] this
means that the probability of changing the occupation state of a certain site does not
depend on the state of the other binding sites. Thus, in the presented model, stochastic
independence of the sites in the stationary distribution for every fixed chemical activity,
translates into a transition matrix g; ; that satisfies a certain kind of stationarity: g; ; =
qi—1 for a distribution ¢ and any pair i, [. Note that, in a decoupled molecule, the rows
of the transition matrix cannot be identical, i.e. the transition distribution depends
on the state. For more information on the interpretation of decoupled sites from a
probabilistic point of view see also [6].

9 Summary and outlook

We presented a derivation of the Grand Canonical Partition Function for a system with
a finite number of binding sites, from a model of stochastic ligand binding dynam-
ics of a single molecule. Some assumptions about the process of ligand binging led
to a Markov chain model with a matrix of transition probabilities that satisfies the
detailed balanced condition. The corresponding stationary distribution coincides with
the Grand Canonical Partition Function if we identify the chemical activity A with a
ratio of two probabilities. The model directly offers the possibility to investigate the
dynamics into equilibrium.
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